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Abstract 
I describe the console program ‘NamRain’ that produces stochastic annual time series of daily 
precipitation at single locations using examples from Namibia. The input required for each 
location are long-term monthly records of precipitation. First, the frequency distribution of 
monthly rainfall, daily amounts, and rainy days is determined using an R script. The 
distribution is imported into the program. The program randomly selects precipitation events 
from an exponential distribution and rejects the event if it does not fit the specified statistics. 
The simulated time series have the same annual and monthly distribution as the original data 
within 100 mm categories. Daily rain amounts match long-term statistics but have not been 
the focus of the algorithm. NamRain should be applied in situations where the emphasis is on 
seasonal variation. 

Introduction 
Studies simulating the effect of climate on natural ecosystems depend on the use of many 
time series representing the current climate and its daily, monthly, and annual variability. The 
nature of simulations with stochastic models requires the use of more time series than can 
usually provided by historic measurements from climate stations. For many parts of the world 
algorithms to produce synthetic time series have been described (e.g., Zucchini et al. 1992, 
Srikanthan and McMahon 2001, Köchy 2006). Such an algorithm has not yet been described 
for Namibia. 
Here I describe an algorithm that produces stochastic time series of daily precipitation. As an 
example I use stations in Namibia of interest for the BIOTA project and for which data were 
freely available. I also describe the algorithm to derive the parameters for other stations. The 
focus of the algorithm is on providing a solution with few parameters that can be easily 
adjusted for other stations, climate change scenarios, and used as a module in computer 
programs. 

Methods 
Climate data for Namibia was downloaded from the National Climatic Data Center of the 
United States of America (www7.ncdc.noaa.gov). The database comprises 31 Namibian 
stations but only seven stations (Fig. 1) have continuous records ranging from 9 to 18 years. 
One station (Gobabis) with only two complete years was included because of its proximity to 
ongoing research projects. I assumed that all no-data entries corresponded to zero rainfall on a 
given day and converted the values from inches to mm. I screened the precipitation data for 
obvious errors. Six entries showed daily precipitation amounts of >150 mm up to 415 mm. In 
reality, rainfall events of this magnitude are extremely rare and have been observed only 
twice while climate was recorded (249 mm on 1986-02-02 in Ombalantu and 208.5 mm on 
1952-02-18 in Kamanjab, Olszewski 2007). None of the days corresponded with historically 
known extreme rainstorms, therefore the data for these days was excluded. 
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The monthly distribution of rainy days in Namibia shows a skewed single or double-peaked 
distribution. The mean daily rain amount per month shows no recognizable distribution. This 
prevented using the same algorithm as in the ReGen simulator (Köchy 2006) developed for 
symmetric rain distributions in the eastern Mediterranean. Instead, I constructed a two-part 
model (Srikanthan and McMahon 2001). The first part determines the whether a day is a rainy 
day (amount > 0.5 mm) by comparing the average historic probability of monthly rainy day 
occurrence with a uniformly distributed pseudo-random number. The second part determines 
the daily rain amount drawn from a negative exponential distribution. The drawn daily rain 
amount is limited by the maximum daily amount observed historically in the same month, or, 
if less than five data have been observed in the same months, the maximum daily amount of 
all months with fewer than five data (105 mm). This prevents the drawing of very high 
amounts from the unbounded negative exponential distribution. This maximum threshold is 
very arbitrary and the user could change the value to 30 mm, which is a more frequently 
observed amount in dry months. I also tested using the lognormal and the skew normal 
distributions. Both performed poorer than the exponential distribution. The parameters for the 
negative exponential distribution were calculated from complete months of daily historic 
records. 
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Fig. 1. Mean monthly and annual precipitation amounts at eight selected stations in Namibia. 
Data calculated from complete months within records of World Climate Data Center. 

For each station with >9 yr records I compared the distribution of annual precipitation 
amounts of stochastic time series of 20 years with those of historic records (Fig. 2). The 
stochastic time series generally have s smaller range and in three out of eight stations have a 
median that is higher than the historic median. The medians of the stochastic series of all 
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long-term stations are within the historic inter-quartile range. Means and confidence intervals 
of historic and synthetic daily data matched closely (Fig. 2). 

 
Fig. 2. Comparison of synthetic (red) with historic (black) time series of daily precipitation. In 
the left panel, the boxplot whiskers indicate the inter-quartile range times 1.5, the boxplot box 
indicates the 25%, 50%, and 75% quantiles. In the right panel, the ends of the bars indicate 
the retransformed 95%-confidence interval on the natural logarithm of the daily data and the 
centre of the bar indicates the retransformed mean of the logarithm of the daily data. 

To further improve the distribution of annual precipitation at each simulated station, NamRain 
versions >1.0.6 check whether a simulated time series fits to the empirical distribution of 
annual precipitation. If this is not the case, the time series is discarded. In addition, an 
empirical correction factor is applied to the simulated daily rain to obtain the same mean 
annual precipitation as observed historically. 

Results 
Preparation of the data was carried out in JMP 7.0 (SAS, Cary, NC, U.S.A.) and R (R 
Development Core Team, 2008) and is presented in Appendix 1. The algorithm is coded in 
C++ (Appendix 2). It can be used as a standalone application or as a function. The input files 
must have six columns, separated by tabulator codes ("\t"): station, month, probability of a 
rainy day, rate  (=1/mean) of the exponential distribution, standard deviation of the rate, and 
maximum observed amount in the month. Each row represents one calendar month. In the 
stand alone application the user can enter the station, the length of the time series and the 
number of time series to be produced. The output file(s) contain the daily records in rows for 
each year. Data are separated by tabulators. 
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Discussion 
On the annual level, the synthetic time series provide acceptable input for stochastic 
simulations. One has to keep in mind that their inter-quartile ranges are smaller than those of 
historic time series. This may be partly due to the shorter length of the historic series, where 
single extreme years would affect the position of the quantiles. If a more similar range is 
desired the user must draw an appropriate sample from a pool of synthetic time series. So far, 
I have not yet validated the performance of the synthetic time series at the monthly or daily 
level. 
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Appendix 1 
# R-Script for analyzing daily precipitation data from Namibia. 
# Data downloaded from the National Climatic Data Center 
#  original data file ("CDO5152001650765") converted to tab-separated text 
 
show.graphs=FALSE 
 
d=read.table("CDO5152001650765.txt", sep="\t", na.strings=c("99.99", "999.9"), header=TRUE, 
as.is=TRUE) 
my.d=data.frame(station=d$STATION) 
my.d$yr=d$YEARMODA%/%10000 
my.d$mo=(d$YEARMODA-my.d$Year*10000)%/%100 
my.d$day=d$YEARMODA%%100 
my.d$q=ifelse(is.character(type.convert(substr(d$PRCP,nchar(d$PRCP),nchar(d$PRCP)), 
as.is=TRUE)),substr(d$PRCP,nchar(d$PRCP),nchar(d$PRCP)),NA) # check whether a code is attached 
my.d$pr.in=as.numeric(substr(d$PRCP,1,nchar(d$PRCP)-ifelse(is.na(my.d$q),0,1))) # remove 
letter code 
my.d$precip=ifelse(my.d$pr.in<99,my.d$pr.in*0.254,NA) # convert from inches to mm 
 
### OR ### 
# use subset of data with only complete years 
my.d=read.table("nm complete months.csv", sep="\t", na.strings=".", header=TRUE) 
colnames(my.d) 
colnames(my.d)<-c("station", "yr", "mo", "day", "precip") 
 
 
#### some simple stats 
# select years 
historic=my.d[,my.d$yr>1960 && my.d$yr<=2008] # be liberal, use as much data as possible 
historic$mo = (historic$mo+4)%%12 
# monthly rain amount each year 
historic.monthly.rain=aggregate(historic$precip, by=list(mo= historic$mo, yr= historic$yr, 
station= historic$station), function(x){sum(x, na.rm=TRUE)})[,c(3,2,1,4)] 
# mean monthly rain amount 
historic.mean.monthly.rain=aggregate(historic.monthly.rain$x, by=list(mo= 
historic.monthly.rain$mo, station = historic.monthly.rain$station), mean) 
 
 
# annual rain each year 
historic.annual.rain=read.delim("nm complete years.txt") 
colnames(historic.annual.rain)<-c("station", "year", "N", "x") 
historic.mean.annual.rain=aggregate(historic.annual.rain$x, by=list(station= 
historic.annual.rain$station), mean) 
 
stations.names=read.table("nm.stations", header=TRUE, sep="\t", encoding="UTF-8") 
stations=unique(historic.mean.monthly.rain$station) 
 
# mean daily volume 
historic.daily = historic[historic$precip>0.5,] 
historic.daily.mean=aggregate(log(historic.daily$precip), 
by=list(station=historic.daily$station), mean) 
historic.daily.mean$logsd=aggregate(log(historic.daily$precip), 
by=list(station=historic.daily$station), sd)$x 
historic.daily.mean$n=aggregate(historic.daily$precip, 
by=list(station=historic.daily$station), length)$x 
historic.daily.mean$lc=exp(historic.daily.mean$x-1.96*historic.daily.mean$logsd) 
historic.daily.mean$uc=exp(historic.daily.mean$x+1.96*historic.daily.mean$logsd) 
#write.table(historic.daily.mean, "nm complete years, daily stats.txt", quote=FALSE, sep="\t", 
row.names=FALSE) 
 
##### show graphs 
if(show.graphs) { 
 for(i in 1:length(stations.names$X.ID)) { 
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 quartz(width=4, height=3) 
 par(mar=c(5,4,0.2,0.2), mgp=c(2.5, 1, 0), mex=0.8) 
 m=historic.mean.monthly.rain$mo[historic.mean.monthly.rain$station==stations.names[i,1]] 
 r=historic.mean.monthly.rain$x[historic.mean.monthly.rain$station==stations.names[i,1]] 
 plot(m, r, type="l", sub=paste(paste(stations.names[i,2],"\n", sep=""), 
paste(stations.names[i,3]/-1000,"°S ", sep=""), paste(stations.names[i,4]/1000, "°E", sep=""), 
sep=""), axes=FALSE, xlab="", ylab="mean monthly precip. (mm)") 
 axis(2) 
 axis(1, labels=c("A", "M","J", "J", "A", "S", "O", "N", "D", "J", "F", "M"), at=0:11) 
 } 
} 
 
##### calculate daily rain probability for each month 
 ## exclude tiny rain events 
 my.d$precip = ifelse(my.d$pr<0.5, 0, my.d$pr) 
 # calculate daily probability of rainfall 
 dm=aggregate(my.d$precip, by=list(mo=my.d$mo, station=my.d$station), 
function(x){length(na.omit(x))}) 
 dor=aggregate(my.d$precip, by=list(mo=my.d$mo, station=my.d$station), 
function(x){sum(sign(na.omit(x)))}) 
 dor$p=dor$x/dm$x 
 
##### determine distribution of rainfall volume 
library('MASS') 
 ##### I assume an exponential distribution based on visual inspection 
 dor$rate=rep(NA,length(dor$x)) 
 dor$maxObs=rep(NA,length(dor$x)) 
 for(i in 1:length(dm$mo)) { 
   t.d=my.d[my.d$station==dm$station[i] & my.d$mo==dm$mo[i] & my.d$precip>0.0 & 
my.d$precip<150.0,] 
   if(length(t.d$precip)>5) { 
    lnfit=fitdistr(t.d$precip, "exponential", lower=0.5, upper=150) 
    dor$rate[i]=coef(lnfit)[1] 
    dor$maxObs[i] = max(na.omit(t.d$precip)) 
  } else { if (length(t.d$precip)>0) { 
    dor$rate[i]=1/9.42 # frequency analysis of any month with < 6 rainfall 
events in JMP 
     dor$maxObs[i] = 105 # based on two occasions with daily rain > 
100, the 'normal max' seems to be ≈30 
     } else {dor$rate[i] = 0 
     dor$maxObs[i] = 0 
    } 
 } 
} # end for 
 
 
# save data for each station for input into a C++ program 
for (s in 1:length(stations)) { 
 write.table(dor[dor$station==stations[s],c(2,1,4,5,6)], paste(stations[s],"e2.txt", 
sep=""), sep="\t", quote=FALSE, row.names=FALSE) 
 } 
  
###### validation 
old.par=par() 
par(mar=c(5,4,0.2,0.2), mgp=c(6,1,0)) 
 boxplot(historic.annual.rain$x~historic.annual.rain$station, outline=FALSE, las=2, 
at=seq(0,8*2-1,2), xlim=c(0, 16), xlab="station ID", ylab="annual precipitation") 
  
 d.stats=data.frame(station=rep(NA,8), logmean=NA, logSD=NA, N=NA) 
 vd=read.delim("validation/680140e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=1, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[1,]$station=680140; d.stats[1,]$N=length(vd.d) 
 d.stats[1,]$logmean=mean(log(vd.d)); d.stats[1,]$logSD=sd(log(vd.d)) 
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 vd=read.delim("validation/680180e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=3, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[2,]$station=680180; d.stats[2,]$N=length(vd.d) 
 d.stats[2,]$logmean=mean(log(vd.d)); d.stats[2,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/681040e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=5, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[3,]$station=681040; d.stats[3,]$N=length(vd.d) 
 d.stats[3,]$logmean=mean(log(vd.d)); d.stats[3,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/681100e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=7, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[4,]$station=681100; d.stats[4,]$N=length(vd.d) 
 d.stats[4,]$logmean=mean(log(vd.d)); d.stats[4,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/681120e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=9, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[5,]$station=681120; d.stats[5,]$N=length(vd.d) 
 d.stats[5,]$logmean=mean(log(vd.d)); d.stats[5,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/681160e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=11, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[6,]$station=681160; d.stats[6,]$N=length(vd.d) 
 d.stats[6,]$logmean=mean(log(vd.d)); d.stats[6,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/683000e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=13, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[7,]$station=683000; d.stats[7,]$N=length(vd.d) 
 d.stats[7,]$logmean=mean(log(vd.d)); d.stats[7,]$logSD=sd(log(vd.d)) 
 
 vd=read.delim("validation/683120e2_0_rain.txt", header=FALSE) 
 vd.y=apply(vd,1,sum) 
 boxplot(vd.y, add=TRUE, at=15, col="red", axes=FALSE, outline=FALSE) 
 vd.d=as.vector(as.matrix(vd, ncol=1)) 
 vd.d=vd.d[vd.d>0.5] 
 d.stats[8,]$station=683120; d.stats[8,]$N=length(vd.d) 
 d.stats[8,]$logmean=mean(log(vd.d)); d.stats[8,]$logSD=sd(log(vd.d)) 
 
quartz.save("validation exponential2 model.png") 
 
### comparison of daily values ### 
d.stats$lc = exp(d.stats$logmean-1.96*d.stats$logSD) 
d.stats$uc = exp(d.stats$logmean+1.96*d.stats$logSD) 
 
 
par(mar=c(3.8,3.8,0.2,0.2), mgp=c(2.3,1,0), mex=0.8) 
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plot(0:16, 0:16*6, type="n", xlab="", ylab="daily precip(mm)", axes=FALSE) 
axis(1, at=0:7*2+1); axis(2); box() 
points(0.5+0:7*2, exp(d.stats$logmean), pch=3) 
arrows(0.5+0:7*2, d.stats$lc, 0.5+0:7*2, d.stats$uc, angle=90, length=0.07/2.54, code=3) 
points(0:7*2+1.5, exp(historic.daily.mean$x[-c(1,4,10)]), pch=3, col="red") 
arrows(0:7*2+1.5, historic.daily.mean$lc[-c(1,4,10)], 0:7*2+1.5, historic.daily.mean$uc[-
c(1,4,6,10)], angle=90, length=0.07/2.54, code=3, col="red") 
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Appendix 2: C++ source code for the time series generator NamRain, version 
1.0.7 
#include <iostream> 
#include <fstream> 
#include <cmath> 
#include <ctime> // for srand 
#include <string> 
#include <sstream> 
 
float z01(void) {return rand()/(float(RAND_MAX)+1);} // we use the built in random number generator  
              //use a better one if you like 
const int d_in_yr = 365; // days in a year 
 
void generateRain(char* station, int maxyears, int copies, float* pRain_mm) { 
 const int years = maxyears; // the length of time series selected by the user 
  
 /* read the parameters from a file into a string */ 
 std::ifstream infile; // the variable associated with the input file 
 std::string FileName; // the name of the input file 
 FileName = station; // copy the file name to a temporary variable 
 FileName += ".txt";  // copy the file name to a temporary variable 
 infile.open(FileName.c_str() , std::ios::binary); // open the file, file name converted to C-
string 
 if(!infile) std::cout << "File '" << FileName << "' not found. No file opened!\n"; 
 else { 
   
  float skip; // a variable for storing redundant data 
  float ProbRain [12]; // an array for the probability of rain on a day for each month 
  float rate [12]; // the rate (1/mean) of the exponential distribution  
       //for the daily rain amount for each month 
  float maxObs [12]; // the maximum amount of rain observed for each month, used to prevent 
too high values 
   
  infile.ignore(100, '\n'); // skip header 
   
  for (int m=0; m<12; m++) { 
   infile >> skip; 
   infile >> skip; 
   infile >> ProbRain[m]; // probability of rain 
   infile >> rate[m]; // 1/mean 
   infile >> maxObs[m]; // max amount 
  } 
   
  infile.close(); // close the input file 
   
   
  /* ****** determine the stochastic rain series ******** */   
  int d = 0; // variable counting days of year, defined outside day loop for use by annual 
summary 
  float arain = 0.0; // variable summing the annual rain amount 
  std::stringstream outFileName; // the name of the output file 
  outFileName << station << "_" << copies << "_rain.txt"; // construct the output file name 
  std::cout << "--------------------\nOutput is in file'" << outFileName.str() <<"'.\n"; 
  std::cout << "--------------------\nannual precipitation summary\n\n"; 
   
  for (int y=0; y<years; y++) { 
   d = 0; // reset days at start of each year 
   arain = 0.0; // reset annual amount at start of each year 
   for (int m=0; m<12; m++) { // for each month 
    for(int md=0; md<31; md++) { // for each day in a month 
            // determine end of month         
     switch (m) { 
      case  1: if (md==27){md=31;} break;//Feb 
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      case  3: if (md==29){md=31;} break; 
      case  5: if (md==29){md=31;} break; 
      case  8: if (md==29){md=31;} break; 
      case 10: if (md==29){md=31;} break; //Nov 
     } // end switch 
      
     // determine whether it's a rainy day 
     float Z = z01(); 
     if (Z<ProbRain[m]) { 
      pRain_mm[y*d_in_yr+d] = 1;} 
     else { 
      pRain_mm[y*d_in_yr+d] = 0;} 
      
     // determine volume on a rainy day from an exponential distribution 
     // daily amount is limited by the maximum amount observed in the records 
     if (pRain_mm[y*d_in_yr+d]==1) { 
      Z = z01(); 
      pRain_mm[y*d_in_yr+d] = std::min(maxObs[m],float(-log(Z))/rate[m]);  
     } 
     arain += pRain_mm[y*d_in_yr+d]; // sum up for annual amount 
     d++; // keep track of day of year 
    } // end for day in month 
   } // end for month 
    
   std::cout << y << "\t" << arain << std::endl; 
    
  } // end for year 
   
  std::ofstream outfile; // variable associated with output file 
  outfile.open(outFileName.str().c_str(), std::ios::binary); // open output file 
   
  /* ****** write time series to output file *********  
   this algorithm puts one year on one line,  
   so you get a year x day matrix 
   */ 
  for (int yy = 0; yy<years; yy++) { 
   for (int dd = 0; dd<(d_in_yr-1); dd++) { 
    outfile << pRain_mm[yy*d_in_yr+dd] << "\t"; 
   } 
   outfile << pRain_mm[yy*years+(d_in_yr-1)] << "\n"; 
  } 
   
  /* ****** write time series to output file *********  
alternative: this algorithm puts the data in one column 
   */ 
  /* 
   for (int yy = 0; yy<years; yy++) { 
    for (int dd = 0; dd<d_in_yr; dd++) { 
     outfile << pRain_mm[yy*d_in_yr+dd] << "\n"; 
    } 
   } 
   */ 
  outfile.close(); // close ouput file 
 }; 
} 
 
int stationID = 0; // internal ID of a station 
char pStation[7]; // the code of the station in the original climate data files  
    // downloaded from the World Climate Data centeer 
int copies = 0; // number of time series requested by the user 
int years = 0; // length of each time series in years 
 
int main (int argc, char * const argv[]) { 
  
 /*** the command line input ****/ 
    std::cout << "Select station:\n"; 
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 std::cout<<"1. GROOTFONTEIN\n"; 
 std::cout<<"2. RUNDU\n"; 
 std::cout<<"3. WALVISBAY(PELICAN)\n"; 
 std::cout<<"4. WINDHOEK\n"; 
 std::cout<<"5. HOSEA KUTAKO\n"; 
 std::cout<<"6. GOBABIS\n"; 
 std::cout<<"7. LUDERITZ\n"; 
 std::cout<<"8. KEETMANSHOOP\n"; 
 std::cin >> stationID; 
  
 std::cout << "Enter number of years in each time series:\n"; 
 std::cin >> years; 
  
 switch(stationID) { 
  case 1: strcpy(pStation, "680140"); break; 
  case 2: strcpy(pStation, "680180"); break; 
  case 3: strcpy(pStation, "681040"); break; 
  case 4: strcpy(pStation, "681100"); break; 
  case 5: strcpy(pStation, "681120"); break; 
  case 6: strcpy(pStation, "681160"); break; 
  case 7: strcpy(pStation, "683000"); break; 
  case 8: strcpy(pStation, "683120"); break; 
 } 
  
 std::cout << "Enter number of time series (=files) you want to have:\n"; 
 std::cin >> copies; 
  
 srand(std::time(NULL)); // initializer and seed for random number generator 
        // if you use a different RNG, replace this with the 
        // appropriate initializer 
  
  
 // finally: the actual algorithm 
 // this and the function definition are the parts you need  
 // if you want to use generateRain in your own code 
 float rain_mm[years*d_in_yr]; // the array for storing the time series 
  
 for (int c=0; c<copies; c++) 
  generateRain(pStation, years, c, rain_mm); 
 // -------------- 
    return 0; 
} 


